3/EH-23 (iii) (Syllabus-2015)

2017

(October)

CHEMISTRY

(Elective/Honours)

(General Chemistry-III)

(Chem-EH-301)

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-I

(Inorganic)

(Marks: 18)

- 1. (a) Write two important characteristics of alkali metals.
 - (b) Account for the facts that—
 - (i) compounds in the +2 oxidation state of Pb are more stable than its compounds in the +4 oxidation state;
 - (ii) although beryllium and aluminium belong to different groups in the periodic table, they resemble each other closely. 2+2=4

(Turn Over)

1

8D/115

(c) Arrange the following elements in increasing order of their electronegativities:

Li, K, Be, Cs

OR

- 2. (a) Explain with reasons the following observations: 11/2+11/2=3 $(i)^{\uparrow}$ CO₂ is a gas but SiO₂ is a highmelting solid.
 - (ii) NCl₃ is a better Lewis base than NF₃.
 - (b) Write one method of obtaining lithium aluminium hydride, LiAlH₄ describe one chemical application of the compound as a reducing agent.
- 3. (a) Comment on the following statement: "All transition metals are d-block elements but all d-block elements are not transition metals."
 - Write the probable oxidation states of manganese (Mn). Which of the oxidation states is most stable and why?

Write a method of preparation of potassium ferrocyanide, K4Fe(CN)6 and its reaction with copper sulphate solution.

OR

- Write the actions of (i) K₂Cr₂O₇ on $FeSO_4$ in the presence of dil. H_2SO_4 on oxalic and (ii) KMnO₄ acidified with $(H_2C_2O_4 \cdot 2H_2O)$ dil. H₂SO₄.
 - lanthanide meant by What is (b) contraction? Write the consequences of lanthanide contraction.
 - electronic general the Write of lanthanides and configurations actinides.
- What is a ligand? Give one example of multidentate ligand with its structure.
 - (b) Calculate the effective atomic number of Fe in Fe(CO)₅.
 - (c) Draw the geometrical isomers of Cr(NH₃)₃Cl₃ and name them as per IUPAC nomenclature.

8D/115

(Continued)

8D/115

(Turn Over)

3

2

2

3

OR

- Comment on the statement, "While $trans-[Co(en)_2Cl_2]^+$ is optically inactive the complex $[Co(en)_3]^{+3}$ is optically active". Write the structures for the optical isomers.
 - (b) Draw the crystal-field splitting diagrams octahedral and tetrahedral complexes.

Explain why crystal-field stabilization energy (CFSE) of an octahedral complex is higher than that of a tetrahedral complex.

SECTION-II

(Organic)

(Marks: 19)

- 7. (a) Explain why carboxylic acids have higher boiling points than alcohols of similar molecular weight.
 - (b) Arrange the following acids in order of increasing acidity with appropriate

 ICH_2COOH , $BrCH_2COOH$, CICH₂COOH, FCH₂COOH mechanisms: CH_2 —C— OC_2H_5 + H_2O $\xrightarrow{H^+}$?

Complete the following reactions with

11/4×2=3

1

1

(ii)
$$O=C=O$$
 ? H_2O/H^+ ?

- Write the tautomeric forms of diethyl malonate.
- (e) Starting from diethyl malonate how are the following compounds synthesized?
 - (i) Malonyl urea 11/2

(ii) Succinic acid

OR

Explain the order of reactivity of the following acid derivatives in nucleophilic substitution reactions:

Why are organolithium compounds more reactive than Grignard reagents?

(Turn Over) 8D/115

3

(c) Complete the following reactions: 1+1=2

(i)
$$CH_3L_i + H_2C$$
 $CHCH_3 \longrightarrow ?$
(ii) $CH_3 - C - OC$ $H_1 + CH_2 - C$

(d) Complete the following reactions:

$$CH_{3}-C-OH \xrightarrow{SOCl_{2}} A \xrightarrow{2\overline{C}H_{2}-N \equiv N} B$$

$$Wolff rearrangement \rightarrow C \xrightarrow{H_{2}O} D$$

(e) What happens when oxalic acid is heated with glycerol at 230 °C? Give chemical equation.

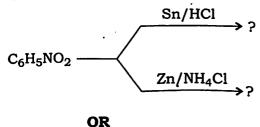
9. (a) Arrange the following aromatic amines in order of increasing basic strength with proper justification:

$$NH_2$$
 NH_2 NH_2 NH_2 NH_2 NH_2 NH_2 NH_2 NH_2

(b) How is primary amine synthesized by Gabriel phthalimide synthesis?

8D/115

(c) What happens when—


(i) aniline is treated with a mixture of NaNO₂ and HCl at 273 K;

(ii) methylamine is warmed with carbon disulphide in the presence of mercuric chloride?

Explain with mechanism. 1½+1½=3

(d) Starting from an alkylhalide, how is nitroalkane prepared?

(e) Complete the following reactions: 1+1=2

10. (a) Complete the following reactions:

$$CH_3$$
— CH_2 — C — OH $\xrightarrow{NH_3}$? $\xrightarrow{P_2O_5}$? $\xrightarrow{LiAlH_4}$?

11/2

3

(b) Explain with chemical equations the reactions of primary, secondary and tertiary amines with HNO₂.

(Turn Over)

(Continued)

1

8D/115

(c) Complete the following reactions with mechanisms: 11/4+11/2=3

(i) $C_6H_5NH_2 + CHCl_3 + KOH \longrightarrow ?$

(ii)
$$CH_3$$
— C — $NH_2 + Br_2 + NaOH$ \longrightarrow ?

- (d) How will you convert—
 - (i) aniline to chlorobenzene;
 - (ii) aniline to o-nitroaniline and p-nitroaniline? 1+1=2

SECTION—III

(Physical)

(Marks: 19)

- 11. (a) Write an expression for the efficiency of a Carnot's engine. How can the efficiency of a heat engine be increased?
 - (b) Establish the relation: $2^{1/2}$ dG = VdP SdT
 - (c) Derive the relation between K_p and K_c .

(d) The value of K_p for the reaction $CO + H_2O \rightleftharpoons CO_2 + H_2$ is 1.06×10^5 at 25 °C. Calculate the standard state free energy change ($\triangle G^\circ$) of the reaction at 25 °C.

OR

 $(R = 8 \cdot 314 \text{ JK}^{-1} \text{ mol}^{-1})$

12. (a) Derive the Clausius-Clapeyron equation for the equilibrium of the typeliquid ⇒ vapour

(b) State Le Chatelier's principle and discuss the effects of temperature and pressure on the following reaction:

$$N_2$$
 (g) + 3H₂ (g) \rightleftharpoons 2NH₃ (g);
 $\Delta H = -92.38 \text{ kJ}$

- (c) State the law of mass action.
- (d) Calculate the entropy change when 1 mole of ethanol is evaporated at 351 K. The molar heat of vaporization of ethanol is 39.84 kJ mol⁻¹.
- 13. (a) Derive an expression for the rate constant of a second-order reaction of the type $2A \rightarrow \text{Products}$.

(Turn Over)

2

3

3

11%

2

3

(Continued)

8D/115

8D/**115**

14.	(b)	Discuss the effect of catalyst on the rate of a reaction.
	(c)	What are colligative properties? Give examples.
	(đ)	10 g of a substance is dissolved in 100 g of water at 25 °C. The vapour pressure of water is lowered from 17.5 mm to 17.2 mm. Calculate the molecular weight of the substance.
		OR ·
	(a)	State Henry's law. What are the limitations of Henry's law?
	(b) ·	What is van't Hoff factor? What is the cause of abnormal molecular weights of solutes in solutions? 1+2=3
	(c)	What is a zero-order reaction? Give examples.
	(d)	The rate constant of a certain hydrolysis reaction is $2 \cdot 3 \times 10^{-2}$ lit mol ⁻¹ S ⁻¹ at 0 °C and $8 \cdot 2 \times 10^{-2}$ lit mol ⁻¹ S ⁻¹ at 15 °C. Find the activation energy of the reaction.